家畜ウシの起源:Origin of cattle


Bos primigenius(Aurochs, cattle):オーロックス、家畜ウシ
Bos grunniens(Yak):ヤク
Bos javanicus(Banteng):バンテン
Bos frontalis(Gayal):ガヤル
Bos gaurus(Gaur):ガウア
Bos sauveli(Kouprey):コープレイ
Bison bonasus(European bison, wisent):ヨーロッパバイソン
Bison bison(American bison, American buffalo):アメリカバイソン、バッファロー

Yak, Date1898(Author:Lydekker, Richard)

Banteng at Indonesia(Author:rochmad setyadi)



A young male Kouprey, the horns not yet fully developed, photographed 1937 at the Zoo of Vincennes, Paris.(Author:Georges Broihanne)

European Bison(Author:Talks Presenters)

Bison(Author:Jack Dykinga)

メスのミトコンドリアDNAで見ると、ヨーロッパバイソン(Bison bonasus, wisent)は、家畜ウシ(Bos taurus, ox, zebu)と近縁である(*1)。ところが、オスのY染色体で見ると、ヨーロッパバイソン(wisent)はアメリカバイソン(bison)と近縁である。これは、ヨーロッパバイソン(wisent)が、バイソン系統のオスとオーロックス系統のメスが交差して成立したためと考えられている。(*2)

Phylogenetic analyses including all the diversity for banteng and gaur sequences. The phylogenetic trees were carried out with the Bayesian approach, and the values on the branches correspond to posterior probabilities greater than 0.5. The analyses were done by including all sequences of banteng (Bos javanicus) and gaur (Bos frontalis) available in the EMBL/GenBank/DDBJ databases. Banteng and gaur sequences produced during this study are indicated by black circle. The tree in (A) was found by analysing the sequences of the subunit II of the cytochrome c oxidase (CO2), whereas the tree in (B) was obtained with the cytochrome b gene sequences (Cyb). (Molecular Phylogenetics and Evolution Vol 33, Issue 3, 2004, P 896-907)

Phylogenetic trees of bovine species. In the Neighbor-Joining tree the circled numbers correspond to the numbering of lineages in the text. The figures near nodes indicate bootstrapping percentages of the Neighbor-Joining (nj) maximum parsimony (mp), and maximum likelihood with the HKY + G model (ml; Swofford 2000) or the fraction of times a given clade occurs in the trees sampled during Bayesian analysis (ba); the figures of 100 are generated by three or all four of the algorithms. The interrupted line indicates an alternative position of wisent, diverging from a cluster of lineages (1), (3), and (4) (Molecular Biology and Evolution, Vol 21, Issue 7, 1 July 2004, P 1165–1170)

Explanations for the divergence of the mitochondrial DNA from bison and wisent (Molecular Biology and Evolution, Vol 21, Issue 7, 1 July 2004, P 1165–1170)


家畜ウシの原種は、オーロックス(Bos primigenius)である。オーロックスは、最後の1頭が1627年にポーランドで死んで絶滅してしまった。絶滅したオーロックスには、少なくとも、次の3つの亜種が存在したことが認められている。

Bos primigenius primigenius(Aurochs):ユーラシア大陸に広く分布
Bos primigenius namadicus(Indian Aurochs):インドに分布、3,200年前?に絶滅
Bos primigenius africanus(African Aurochs):北アフリカに分布

Aurochs, the original probably dates from the 16th century(Author:Charles Hamilton Smith)

Aurochs bull at the Zoological Museum in Copenhagen. 7400 BC, found on Prejlerup.(Author:Michael B. H.)



Watusi Cattle(Sanga cattle)アフリカ(Author:Just chaos)

なお、家畜ウシの学名は、以前はBos taurus(cattle)あるいはBos indicus(zebu)であったが、現在は、祖先のオーロックスとおなじBos primigeniusに統一されている。

Bos taurusBos primigenius taurus(cattle):ウシ
Bos indicusBos primigenius indicus(zebu):ゼブー、コブウシ

2014年に、134品種1,543頭の家畜ウシの遺伝子の解析が行われている(*3)。家畜ウシは、アジア、ユーラシア、アフリカの3つの大きなグループに分かれた。また品種としては、ウシ(Bos taurus taurus)、ゼブー(Bos taurus indicus)、バンテン(Bos javanicus)の3種に大きく分けられる。家畜化が行われたおもな場所は、肥沃な三日月地帯とインダス渓谷の2か所と考えられる。

バンテン(Bos javanicus)は、ウシやゼブーの祖先の系統と、より古い時代に分岐した祖先に由来する。



Principal component analysis of 1,543 animals genotyped with 43,043 SNPs. Points were colored according to geographic origin of breed; black: Africa, green: Asia, red: North and South America, orange: Australia, and blue: Europe. (PLoS Genet 10(3): e1004254)

Phylogenetic network of the inferred relationships between 74 cattle breeds. Breeds were colored according to their geographic origin; black: Africa, green: Asia, red: North and South America, orange: Australia, and blue: Europe. Scale bar shows 10 times the average standard error of the estimated entries in the sample covariance matrix. Common ancestor of domesticated taurines is indicated by an asterisk. Migration edges were colored according to percent ancestry received from the donor population. Migration edge a is hypothesized to be from wild African auroch into domesticates from the Fertile Crescent. Migration edge b is hypothesized to be introgression from hybrid African cattle. Migration edge c is hypothesized to be introgression from Bali/indicine hybrids into other Indonesian cattle. Migration edge d signals introgression of African taurine into Iberia. Migration edges e and f represent introgression from Brahman into American Criollo. (PLoS Genet 10(3): e1004254)

Worldwide map with country averages of ancestry proportions with 3 ancestral populations (K = 3). Blue represents Eurasian Bos t. taurus ancestry, green represents Bos javanicus and Bos t. indicus ancestry, and dark grey represents African Bos. t. taurus ancestry. Please note, averages do not represent the entire populations of each country, as we do not have a geographically random sample. (PLoS Genet 10(3): e1004254) 青:ユーラシアの系統、緑:ゼブーとバンテンの系統、ダークグレー:アフリカの系統

Phylogenetic network of the inferred relationships between 14 cattle breeds. Breeds were colored according to their geographic origin; green: Asia, and blue: Europe. Scale bar shows 10 times the average standard error of the estimated entries in the sample covariance matrix. Migration edges were colored according to percent ancestry received from the donor population. Migration edges show indicine introgression into Mongolian cattle, African taurine and indicine ancestry in Marchigiana, and a northern European influence on Wagyu. (PLoS Genet 10(3): e1004254)


*1)Alexandre Hassanin, AnneRopiquet, (2004) Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the Kouprey, Bos sauveli Urbain 1937, Molecular Phylogenetics and Evolution Vol 33, Issue 3, 2004, P 896-907
*2)Edward L. C. Verkaar  Isaäc J. Nijman  Maurice Beeke Eline Hanekamp  Johannes A. Lenstra, (2004) Maternal and Paternal Lineages in Cross-Breeding Bovine Species. Has Wisent a Hybrid Origin?, Molecular Biology and Evolution, Volume 21, Issue 7, 1 July 2004, Pages 1165–1170,
*3)Decker JE, McKay SD, Rolf MM, Kim J, Molina Alcalá A, Sonstegard TS, et al. (2014) Worldwide Patterns of Ancestry, Divergence, and Admixture in Domesticated Cattle. PLoS Genet 10(3): e1004254
*4)Bollongino R, Burger J, Powell A, Mashkour M, Vigne JD, Thomas MG. (2012) Modern Taurine Cattle Descended from Small Number of Near-Eastern Founders. Molecular Biology and Evolution, Volume 29, Issue 9, 1 September 2012, Pages 2101–2104,

電子園芸BOOK社 (2016-07-29)
売り上げランキング: 49,883

ヒツジの起源:Origin of domestic sheep


Ovis. canadensis(Bighorn):ビッグホーン
O. dalli(Dall sheep):ドールビッグホーン
O. nivicola(Snow Sheep):シベリアビッグホーン
O. ammon(Argali):アルガリ
O. vignei(Urial):ウリアル
O. orientalis(Mouflon):ムフロン

The different classifications of the genus Ovis.

Phylogeography of the wild Ovis species. The map shows the geographic distribution of the seven wild Ovis species according to the classification of Nadler et al. (1973). The Chronogram presented is from a Bayesian dating analysis of the Cyt b data. Divergence times are given ±95% CI. The chromosome numbers are given for each taxon. The O. orientalis × vignei hybrids, which have a ploidy between 2n = 54 and 2n = 58, are not presented. The chromosome numbers given in italic refer to the hypothetical ancestral states according to the most parsimonious evolutionary scenario with regards to the Cyt b phylogeny.(Molecular Phylogenetics and Evolution 54 (2010) 315–326)

Differences among Cyt b haplotypes within and between Ovis species. Values above the diagonal give the average pairwise differences between species. Diagonal values give the pairwise difference within each group.

Bighorn(Author:Kim Keating)

Dall sheep(Author:Denali National Park and Preserve)

Snow sheep(Author:Joseph Smit)



Mouflon(Author:Jörg Hempel)

ヒツジ(O. aries)の原種は、ムフロン(O. orientalis)である。ムフロンは、トルコ、コーカサス、イランなどに分布するが、ヨーロッパ(O. orientalis musimon)やキプロス島(O. orientalis ophion)にも生息している。

2002年、および2007年の報告によれば、家畜のヒツジのミトコンドリアDNAには、A、B、C、D、Eの5つのハプログループが存在する。ハプロAとBは、別々に家畜化され、ヨーロッパムフロン(O.o.musimon)は、ハプロBに属している。ヨーロッパムフロンは、新石器時代にアジアからヨーロッパに運ばれたのではないかと考えられている。(*2, 3)

Summary of sheep breed and mitochondrial haplogroup phylogenetic variation.(Genetics. 2007 Mar; 175(3): 1371–1379)

Five mtDNA lineages illustrated with two types of phylogenetic tree. (a) Neighbor-joining tree showing O. aries lineages in relation to wild sheep using cytB sequence (967 bp). Analysis of animals from nine domestic breeds (n = 197) was supplemented with wild Ovis species and a divergent haplotype previously identified from the Karayaka breed (Pedrosa et al. 2005). Additional data on the relationship between wild Ovis species are presented elsewhere (Hiendleder et al. 2002; Bunch et al. 2006). Bootstrap values are indicated on cluster nodes; values in parentheses were taken from a similar tree constructed using the mtCR-cytB data set (2027 bp). (b) Weighted median-joining network showing mt haplotypes. Node size is proportional to haplotype frequency and the mutational differences between haplogroups are proportional to branch length (D shown on branch). The smallest node is representative of one animal.(Genetics. 2007 Mar; 175(3): 1371–1379)

2009年に、ヒツジのゲノム内の内在性レトロウイルスのDNA解析が行われている。133品種1362頭の家畜ヒツジと63系統の野生のヒツジ属(O. vignei, O. orientalis musimon, O. orientalis ophion, O. orientalis orientalis)の調査の結果、ヒツジの家畜化(選択)は、はじめに南西アジアで起こり、次いで、ヨーロッパ、アフリカ、アジアに広がったことが示唆された。(*4)

Worldwide distribution of insertionally polymorphic enJSRVs. Distribution of the insertionally polymorphic enJSRV loci analysed in this study in 65 sheep populations representing local breeds from the old world. (A) Frequencies of each enJSRV locus in each population are represented by a vertical bar and arranged in a descending order. Insertion frequencies were obtained using the software Arlequin 3.11 (27) treating the absence of a specific enJSRV provirus as a recessive allele. (B) Locations of sheep populations sampled. (C-F). Interpolation maps displaying the spatial distribution of estimated enJSRVs frequencies. The geographical variation was visualized using the ‘Spatial Analyst Extension’ of ArcView GIS 3.2 software (ESRI, Redlands, CA, USA; http://www.esri.com). Interpolated map values were calculated employing the inverse distance–weighted with 12 nearest neighbours and a power of two, and interpolation surfaces were divided into 13 classes with higher insertion frequencies indicated by darkest shading. The central point of the sampling area was used as geographic coordinates for each population.(Science24 Apr 2009 : 532-536)

Combination of enJSRV proviruses (retrotypes) in the domestic sheep. Pie charts in the figure represent the frequency of each retrotype in the 65 populations tested. Each sheep tested was assigned a retrotype on the basis of the combination of insertionally polymorphic enJSRV proviruses present in their genome. Retrotypes were defined R0 to R14 as follows: RO = no insertionally polymorphic enJSRVs; R1 = enJSRV-7; R2 = enJSRV-18; R3 = enJS5F16; R4 = enJSRV-7 + enJSRV-18; R5 = enJSRV-7 + enJS5F16; R6 = enJSRV-18 + enJS5F16; R7 = enJSRV-7 + enJSRV-18+ enJS5F16; R8 = enJSRV-8; R9 =enJS5F16 + enJSRV-8; R10 = enJSRV-7 + enJS5F16 + enJSRV-8; R11 = enJSRV-18 + enJSRV-8; R12 = enJSRV-18 + enJS5F16 + enJSRV-8; R13 = enJSRV-7 + enJSRV-18 + enJSRV-8; R14 = enJSRV-7 + enJSRV-18 + enJS5F16 + enJSRV-8. Each retrotype is represented with a different colour (and pattern) as indicated in the figure. Numbers beside each pie chart indicate each of the 65 populations tested as indicated in Table S1. Note that most of the populations in South-West Asia, Central Asia, Southern Europe and Africa possess R2 (i.e. presence of enJSRV-18 only, shown in green) as the predominant retrotype. Around the Mediterranean basin there is also a high proportion of R4 given by the contemporary presence of enJSRV-7 and enJSRV-18 (shown in yellow). The primitive breeds are characterized by a high proportion of animals with R0 (no insertionally polymorphic proviruses, shown in white) or R1 (presence of enJSRV-7 only, shown in red). A ‘Nordic’ retrotype R3 (shown in blue) was characterized by a low frequency of enJSRV-18 and a high frequency of enJS5F16; Nordic populations also had a relatively high frequency of sheep with none of the insertionally polymorphic proviruses tested.(Science24 Apr 2009 : 532-536)

2013年には、現在のトルコ国内の家畜ヒツジ(628頭)、現在の野生ムフロン(O. gmelinii anatolica)(30頭)、およびトルコ南部の遺跡(OylumHöyük BCE 1880-330)から出土したサンプル(33頭)のミトコンドリアDNAの分析結果が報告された(*5)。なお、O. gmelinii anatolicaは、O. orientalisのことである。




The neighbor-joining tree of mtDNA CR sequences from domestic sheep and O. g. anatolica samples. The haplogroups (HPGs A–E) and two clusters (Cluster i and Cluster ii) formed by the sequences are designated. The bootstrap values are indicated on the main branches of the tree.(PLoS ONE 8(12): e81952.)

Summary of mtDNA haplogroup diversity of domestic sheep.(PLoS ONE 8(12): e81952.)

Haplogroup/haplotype compositions of the breeds, aDNA and O. g. anatolica on the map of Turkey. The locations of the pie charts on the centroids of the collection sites are all within the native distributions of the breeds or within the current day distribution for O. g. anatolica. Ancient DNA (aDNA) samples are located in the Kilis province, where Oylum Höyük is located. aDNA samples are considered in two successive time intervals therefore they are represented by two pie charts. The abbreviations of the breed names are given in the Materials and Methods section.(PLoS ONE 8(12): e81952.)

Median-joining network of mtDNA partial cytB sequences found within modern domestic and wild sheep. Nodes representing the haplotypes are proportional to the sample sizes used for the construction of the network. Haplotype names are given near the nodes. The ellipses labeled with letters A–E refer to the haplotypes of the individuals whose haplogroups were identified in domestic sheep in accordance with their CR sequences. The accession numbers of sequences used in the MJ network and their respective haplotypes are given together with the reference studies in Table S4.(PLoS ONE 8(12): e81952.)

The distribution of wild samples that were employed in Figure 3.The collection sites for members of Clusters I, II and III are indicated on the map with the brown region, the region with yellow borders and the blue region, respectively. The exact locations of collection sites (solid red circles) together with haplotypes (as depicted in Figure 3) of the wild O. gmelinii members of Cluster I (typed in red) and Cluster II (typed in black) including O. g. ophion are shown. The exact locations of the hybrids (not shown) were used in drawing the borders of the region with yellow borders and the blue region. The map was created using ArcMap™ within ArcGIS Desktop 10.(PLoS ONE 8(12): e81952.)

2013年の報告を読んだときに、びっくりしたのは、キプロス島の野生ムフロン(O. g. ophion)が、クラスターⅡに入っていたことである。現在のキプロスムフロンが、12,000年前に運び込まれたムフロンの子孫であるならば、12,000年前のキプロスムフロンは、もともとはイラン高原などに生息していたムフロンの系統ということになる。


*1)Hamid Reza Rezaei, Saeid Naderi, Ioana Cristina Chintauan-Marquier, Pierre Taberlet, Amjad Tahir Virk, Hamid Reza Naghash, Delphine Rioux, Mohammad Kaboli, François Pompanon.(2010)Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Molecular Phylogenetics and Evolution 54 (2010) 315–326
*2)Stefan Hiendleder, Bernhard Kaupe, Rudolf Wassmuth and Axel Janke.(2002)Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. Proc Biol Sci. 2002 May 7;269(1494):893-904
*3)Jennifer R. S. Meadows, Ibrahim Cema, Orhan Karaca, Elisha Gootwine, and James W. Kijas. (2007) Five Ovine Mitochondrial Lineages Identified From Sheep Breeds of the Near East. Genetics. 2007 Mar; 175(3): 1371–1379.
*4)Bernardo Chessa, Filipe Pereira, Frederick Arnaud, Antonio Amorim, Félix Goyache, Ingrid Mainland, Rowland R. Kao, Josephine M. Pemberton, Dario Beraldi, Michael J. Stear, Alberto Alberti, Marco Pittau, Leopoldo Iannuzzi, Mohammad H. Banabazi, Rudovick R. Kazwala, Ya-ping Zhang, Juan J. Arranz, Bahy A. Ali, Zhiliang Wang, Metehan Uzun, Michel M. Dione, Ingrid Olsaker, Lars-Erik Holm, Urmas Saarma, Sohail Ahmad, Nurbiy Marzanov, Emma Eythorsdottir, Martin J. Holland, Paolo Ajmone-Marsan, Michael W. Bruford, Juha Kantanen, Thomas E. Spencer, Massimo Palmarini. (2009) Revealing the History of Sheep Domestication Using Retrovirus Integrations. Science24 Apr 2009 : 532-536
*5)Demirci S, Koban Baştanlar E, Dağtaş ND, Pişkin E, Engin A, Özer F, et al. (2013) Mitochondrial DNA Diversity of Modern, Ancient and Wild Sheep (Ovis gmelinii anatolica) from Turkey: New Insights on the Evolutionary History of Sheep. PLoS ONE 8(12): e81952.

電子園芸BOOK社 (2016-07-29)
売り上げランキング: 12,808

家畜ヤギの起源:Origin of domestic goat



Capra sibirica(Siberian Ibex):シベリアアイベックス
C. nubiana(Nubian Ibex):ヌビアアイベックス
C. ibex(Alpine Ibex):アルプスアイベックス
C. pyrenaica(Spanish goat):スペインアイベックス
C. caucasica(West Caucasian tur):カフカスアイベックス
C. cylindricornis(East Caucasian tur):カフカスツール
C. falconeri(Markhor):マーコール
C. aegagrus(Bezoar):ベゾアール
C. hircus(Goat):家畜ヤギ

Siberian Ibex(Author:Ksuryawanshi)

Nubian Ibex(Author:netzach farbiash)

Alpine Ibex(Author:Bert de Tilly)

Spanish Ibex(Author:Juan Lacruz)

West Caucasian tur(Author:Cedricguppy)

East Caucasian tur(Author:Altaipanther)


Bezoar(Author:F. Spangenberg)

Horn morphology of the Wve major morphotypes: (a) the generalized ibex-type (C. [i.] ibex, C. [i.] nubiana, C. [i.] sibirica, and C. [i.] caucasica), (b) the Spanish goat (C. pyrenaica), (c) the eastern tur (C. cylindricornis), (d) the markhor (C. falconeri), and (e) the bezoar-type (C. aegagrus). Artwork by Julie Dlugos.(Molecular Phylogenetics and Evolution 40 (2006) 739–749)

Approximate geographic distributions of wild Capra: the Spanish goat (C. pyrenaica), the eastern tur (C. cylindricornis), the markhor (C. falconeri), the generalized ibex-type (C. [i.] ibex, C. [i.] nubiana, C. [i.] sibirica, and C. [i.] caucasica) and the bezoar-type (C. aegagrus). Distribution areas are synthesized from Shackleton (1997).(Molecular Phylogenetics and Evolution 40 (2006) 739–749)

Phylogenetic tree constructed with cytochrome b sequences using Maximum Likelihood (ML) and Bayesian analyses. Numbers above the line are ML bootstrap values (BP) based on 200 pseudoreplicates. Numbers below the line are Bayesian posterior probabilities based on one million step Markov chain Monte Carlo simulations. See Tables 3 and 4 for details on location codes and GenBank accession numbers which follow species names in parentheses. (b) Phylogenetic tree constructed with AMELY and ZFY sequences using ML and Bayesian analyses. The same topology was obtained using maximum parsimony, and neighbor-joining methods. The (n) indicates the number of samples sequenced for both AMELY and ZFY. Numbers above the line are ML BP based on 200 pseudoreplicates. Numbers below the line are Bayesian posterior probabilities based on one million step Markov chain Monte Carlo simulations.(Molecular Phylogenetics and Evolution 40 (2006) 739–749)

Hypothetical evolutionary scenario of the genus Capra. The encircled symbols represent the possible geographic location of the ancestral ibex-type and bezoar-type.(Molecular Phylogenetics and Evolution 40 (2006) 739–749)

家畜ヤギ(C. hircus)の原種は、ベゾアール(C. aegagrus)である。ベゾアールは、トルコ、コーカサス、イラク、イラン、中央アジアに分布する。また、クレタ島(Kri-kri)など地中海島嶼部にも生息している。


Neighbor-joining trees of domestic goat based on 1540 mtDNA haplotypes (A) and on the 22 reference mtDNA haplotypes (B). Distances were calculated using the Kimura 2-Parameter model with gamma correction (alpha = 0.28). On the (A) tree, the numbers on the branches represent bootstrap values out of 1000 replications, and the stars point out the position of reference individuals for each haplogroup used to construct the (B) tree.(PLoS One. 2007; 2(10): e1012.)

Genetic diversity of goat mtDNA haplogroups(PLoS One. 2007; 2(10): e1012.)



Phylogenetic relationships of the 243 haplotypes from the 473 bezoars studied. This tree was obtained with the NJ method. To identify shared mtDNA haplogroups, 22 haplotypes chosen to represent the overall diversity of modern domestic goats (11) have also been included in the analysis (red). The scale represents the genetic distance. The different colors correspond to the haplotypes from the different mtDNA haplogroups found in domestic goat (A, green; B, dark blue; C, yellow; D, purple; F, light blue; G, orange). The other bezoar haplotypes are represented in white.(PNAS November 18, 2008. 105 (46) 17659-17664)

Study area and geographic distribution of the mtDNA haplogroups in the bezoar. (A) Natural distribution of the bezoar according to Uerpmann (38). This distribution may not have changed since the beginning of goat management/domestication, and stops at the eastern limit of the map. The archaeological sites that give evidence of local pre-Neolithic goat domestication are represented in red. The sites that suggest either local goat domestication or early prepottery Neolithic transfer of domesticated goat are represented in orange. Finally, the sites that provide evidence of transfer of domestic goats out of the original geographic range of the bezoar before the middle of the 10th millennium cal. B.P. are represented in yellow (see Table S1). The northern Zagros comprises the Iranian Provinces of Azerbaijan Gharbi, Zanjan and Kurdistan; the Central Zagros comprises Kermanshah, Lorestan, Khuzestan, and Isfahan Provinces. The Southern Zagros mainly comprises the Fars Province. (B) Geographic distribution of the mtDNA haplogroups in the bezoar. The size of the circles is proportional to the number of individuals analyzed. The different bezoar haplogroups are color-coded as in Fig. 1. Different localities are identified by numbers, as in Table S1.(PNAS November 18, 2008. 105 (46) 17659-17664)

ヤギ、ヒツジ、ウシ、ブタの家畜化についての考古学的な検証としては、2002年の本郷一美氏の報告がある。トルコ南東部のチャヨヌ遺跡(Çayönü)では、12,000~9,000年前の約3,000年間、定住生活が営まれていた。場所は、カラジャ山(Karaca Dağ)の北方に位置している。遺跡から出土した動物骨の分析では、PPNB後期に、ヤギとヒツジの骨が、出土動物骨の大多数を占めるようになる。また、ヤギ、ヒツジ、ウシ、イノシシのサイズが小型化し、死亡年齢と食性の変化も生じている。これらのことから、PPNB後期に家畜の飼育が始まったと推定している。(*4, 5, 6)




*1)Nathalie Pidancier, Steve Jordan, Gordon Luikart, Pierre Taberlet, (2006) Evolutionary history of the genus Capra (Mammalia, Artiodactyla): Discordance between mitochondrial DNA and Y-chromosome phylogenies.Molecular Phylogenetics and Evolution 40 (2006) 739–749
*2)Saeid Naderi, Hamid-Reza Rezaei, Pierre Taberlet, Stéphanie Zundel, Seyed-Abbas Rafat, Hamid-Reza Naghash, Mohamed A. A. El-Barody, Okan Ertugrul, François Pompanon.(2007)Large-scale mitochondrial DNA analysis of the domestic goat reveals six maternal lineages with high haplotype diversity. PLoS One. 2007; 2(10): e1012.
*3)Saeid Naderi, Hamid-Reza Rezaei, François Pompanon, Michael G. B. Blum, Riccardo Negrini, Hamid-Reza Naghash, Özge Balkız,f Marjan Mashkour,g Oscar E. Gaggiotti, Paolo Ajmone-Marsan, Aykut Kence, Jean-Denis Vigne, and Pierre Taberleta,(2008)The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. PNAS November 18, 2008. 105 (46) 17659-17664
*4)本郷一美.(2002)狩猟採集から食料生産への緩やかな移行 : 南東アナトリアにおける家畜化. 国立民族学博物館調査報告 33 109-158
*5)本郷一美.(2008)ドメスティケーションの考古学. 総研大ジャーナル 13 30-35
*6)Hongo, H., Pearson, J., Öksüz, B., Ilgezdi, G. (2009) The Process of Ungulate Domestication at Çayönü, Southeastern Turkey: A Multidisciplinary Approach focusing on Bos sp. and Cervus elaphus. Anthropozoologica 44(1): 63-78.
*7)Vigne, Jean-Denis & Carrre, I & Salige, J.F. & Person, A & Bocherens, Hervé & Guilaine, J & Briois, François. (2000). Predomestic cattle, sheep, goat and pig during the late 9th and the 8th millennium cal. BC on Cyprus: Preliminary results of Shillourokambos (Perkklisha, Limassol). Archaeozoology of the Near East IV. 52-75.

堆肥と土壌の作り方: 身近な有機物を利用する
電子園芸BOOK社 (2016-09-19)
売り上げランキング: 52,762

トウモロコシの起源:Origin of maize




テオシンテは、現在のメキシコでもトウモロコシ畑に雑草として生息しており、両者の自然雑種が見られる(写真)。トウモロコシの染色体数は2n=20であり、テオシンテ(Zea mays L. subsp. mexicana)の染色体数も2n=20である。両者は容易に交雑して、その種子の稔性も大きい。形態が大きく異なることをのぞけば、遺伝的には、トウモロコシとテオシンテは同種の植物であることを示している。

teosinte (top), maize-teosinte hybrid (middle), maize (bottom)(Author:John Doebley)



イネ科(Poaceae)テオシンテ属(Zea)の植物としては、数種が知られており、栽培トウモロコシはZea mays L.に含まれる。

Z. diploperennis H. H. Iltis et al.
英名:diploperennial teosinte
分布:メキシコ(Jalisco, Nayarit)

Z. luxurians (Durieu & Asch.) R. M. Bird
英名:Florida teosinte, Guatemalan teosinte
分布:メキシコ(Oaxaca)、グアテマラ、 ホンジュラス

Z. mays L.
英名:maize, Indian corn

Z. nicaraguensis H. H. Iltis & B. F. Benz

Z. perennis (Hitchc.) Reeves & Mangelsd.
英名:perennial teosinte
分布:メキシコ(Jalisco, Michoacan)

Z. vespertilio Gómez-Laur.

Z. diploperennis H. H. Iltis et al.(Author:Jeffdelonge)

Z. mays L.にはいくつかの亜種が認められている。

Z. mays L. subsp. huehuetenangensis (H. H. Iltis & Doebley) Doebley
英名:Hhuehuetenango teosinte, San Antonio Huista teosinte

Z. mays L. subsp. mexicana (Schrad.) H. H. Iltis
英名:Central Plateau teosinte, Chalco teosinte, Durango teosinte, Mexican teosinte、nobogame teosinte
分布:メキシコ(Chihuahua, DurangoGuanajuato, Jalisco , Michoacan)

Z. mays L. subsp. parviglumis H. H. Iltis & Doebley
英名:Balsas teosinte, Guerrero teosinte
分布:メキシコ(Guerrero, Jalisco, Michoacan, Oaxaca)
メキシコの標高400~1800mの地域に分布。mexicana に比べ、低い標高で温暖な地域に生育している。分げつが多く、20~100本になる。栽培トウモロコシの祖先野生種。

Z. mays L. subsp. mays
英名:corn, dent corn, field corn, flint corn, maize, pod corn, popcorn, sweet corn

Z. mays L. subsp. parviglumis(Author:Mbhufford)

2002年に松岡由浩氏らは、トウモロコシ在来品種193系統とテオシンテ71系統を用いて、分子系統樹を作成した。その結果、すべての栽培トウモロコシは、メキシコ南部のBalsas川中流域に自生するZ. mays L. subsp. parviglumisから生じたことが判明した。栽培化(domestication)は1回だけであり、比較的標高が低いBalsas川中流域から、メキシコ高地に伝播し、そこで急速に多様化して、北米や南米に拡散したことが示唆された。また、Z. mays L. subsp. parviglumisと栽培トウモロコシの分岐年代は、約9,000年前と推定されている。(*2)

Geographic distribution of maize and teosinte used in this study. Core Andean maize characterized by hand-grenade-shaped ears (22 samples), other South American maize (47), Guatemalan and southern Mexican maize (31), Caribbean maize (6), lowland western and northern Mexican maize (15), highland Mexican maize (20), eastern and central U.S. maize (24), southwestern U.S. maize (22), northern Mexican maize (6), ssp. parviglumis (34), and ssp. mexicana (33). Inset shows the distribution of the 34 populations of ssp. parviglumis in southern Mexico with the populations that are basal to maize in Fig. 2 (represented as asterisks). The blue line is the Balsas River and its major tributaries.(source:PNAS April 30, 2002. 99 (9) 6080-6084)

Phylogenies of maize and teosinte rooted with ssp. huehuetenangensis based on 99 microsatellites. Dashed gray line circumscribes the monophyletic maize lineage. Asterisks identify those populations of ssp. parviglumis basal to maize, all of which are from the central Balsas River drainage. (a) Individual plant tree based on 193 maize and 71 teosinte. (b) Tree based on 95 ecogeographically defined groups. The numbers on the branches indicate the number of times a clade appeared among 1,000 bootstrap samples. Only bootstrap values greater than 900 are shown. The arrow indicates the position of Oaxacan highland maize that is basal to all of the other maize. (source:PNAS April 30, 2002. 99 (9) 6080-6084)


2009年の報告では、Balsas川中流域のXihuatoxtla洞窟から出土したZ. mays L.のデンプンとプラントオパールの年代は、8,700年前であることが示されている(*3)。洞窟の周辺は、山頂が1,500~1,800m、谷底では標高700~900mの渓谷地帯である。年間降水量は1,000~1,400mmで、6~10月の雨期に90%が降る。気候区分は、サバナ気候あるいは温暖冬季少雨気候である。植生は熱帯性落葉樹林で、ピテケロビウム(マメ科)、プロソピス(マメ科)、ロイカエナ(マメ科)、スポンディア(ウルシ科)、ヤシ、ヤマノイモなどが多い。洞窟から出土した種子や磨石(すりいし)に付着したデンプンの分析から、8,990~8,610年前に、Z. mays L.とカボチャがすでに栽培されていたと考えられている。(*4)

The study area in northern Guerrero.(source:PNAS March 31, 2009. 106 (13) 5014-5018)

A view of the enormous boulder that formed the Xihuatoxtla Shelter. (source:PNAS March 31, 2009. 106 (13) 5014-5018)

Handstones and milling stone bases from the preceramic layers in the Xihuatoxtla Shelter. (A) Small handstone (318e) from layer E that yielded 80 maize starch grains, maize cob phytoliths, and 29 squash phytoliths. (B) Complete milling stone base (316d) from layer D that yielded 68 maize starch grains as well as 4 yam (Dioscorea sp.), 3 legume, and 1 Marantaceae starch grains. (C) Handstone fragment (318d) from layer E that yielded 22 maize starch grains, maize cob phytoliths, and 28 squash phytoliths. (D) Handstone (322c) from layer E that yielded 11 maize starch grains, maize cob phytoliths, and 7 squash phytoliths. (E) Small handstone (365a) from layer C that yielded 24 maize starch grains and maize cob phytoliths. (F) Handstone (319d) from layer E that yielded 8 maize starch grains, maize cob phytoliths, and 37 squash phytoliths. (G) Slab milling stone fragment (316c) from layer D that yielded 2 maize starch grains, maize cob phytoliths, and 29 squash phytoliths. (source:PNAS March 31, 2009. 106 (13) 5014-5018)




野生のアルパカ(Author:Franz Xaver)


鳥のなかで思い浮かぶのは、リョコウバト(passenger pigeon)である。リョコウバトは集団で渡りを行うハトで、夏期は北米の落葉樹林帯で営巣、繁殖し、冬期にはメキシコ周辺で生活していた。北米ではもっとも数が多かった鳥類で、かつては30~50億匹が生息していたと見積もられている。



Martha, the last passenger pigeon, mounted in a display case in the National Museum of Natural History(Author:Ph0705)





Shrew opossum,Dusky caenolestid (Caenolestes fuliginosus)(1863)

*2)Matsuoka, Y., Y. Vigouroux, M. M. Goodman, J. Sanchez G., E. Buckler, J. Doebley.(2002)A single domestication for maize shown by multilocus microsatellite genotyping. PNAS April 30, 2002. 99 (9) 6080-6084
*3)Dolores R. Piperno, Anthony J. Ranere, Irene Holst, Jose Iriarte and Ruth Dickau,(2009)Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico, PNAS March 31, 2009. 106 (13) 5019-5024;
*4)Anthony J. Ranere, Dolores R. Piperno, Irene Holst, Ruth Dickau and José Iriarte,(2009)The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico, PNAS March 31, 2009. 106 (13) 5014-5018
*5)Joost van Heerwaarden, John Doebley, William H. Briggs, Jeffrey C. Glaubitz, Major M. Goodman, Jose de Jesus Sanchez Gonzalez and Jeffrey Ross-Ibarra.(2011)Genetic signals of origin, spread, and introgression in a large sample of maize landraces
PNAS January 18, 2011. 108 (3) 1088-1092
*6)松岡由浩.(2007)栽培植物の分子系統学.蛋白質 核酸 酵素 Vol.52 No.15
*7)福永健二.(2009)植物のドメスティケーション:トウモロコシの起源.国立民族学博物館調査報告84 137-151

プロにまなぶ アスパラガスのつくり方
電子園芸BOOK社 (2016-06-04)
売り上げランキング: 83,820

イネとスイギュウ:Oryza and water buffalo


Oryza rufipogon(source:中国科学院植物研究所)

台湾のスイギュウ(Author:L. Chang)


スイギュウは、ウシ科(Bovidae)の草食動物で、アフリカスイギュウ属(Syncerus)とアジアスイギュウ属(Bubalus)に分けられる。アフリカスイギュウ属は、アフリカスイギュウ(African buffalo、Syncerus caffer)の1種のみとされるが、いくつかの亜種が認められている。

・ケープバッファロー:Cape buffalo or Southern savanna buffalo, S. c. caffer:大型で南アフリカ、東アフリカに分布

・スーダンバッファロー:Sudanese buffalo, S. c. brachyceros:中型で西アフリカに分布

・ナイルバッファロー:Nile buffalo, S. c. aequinoctialis:中央アフリカのサバナのにみに分布

・マウンテンバッファロー:Mountain buffalo or Virunga buffalo, S. c. mathewsi:コンゴ、ルワンダ、ウガンダの山岳地帯に分布

・フォレストバッファロー:Forest buffalo、Dwarf buffalo, S. c. nanus:肩高120cm未満でもっとも小型。中央アフリカと西アフリカの森林地域に分布。S. c. cafferは2n=52、S. c. nanusは2n=54なので、別種として扱う研究者もいる

Buffalo (syncerus caffer) in the Kalahari desert, South Africa(Author:Charlesjsharp)

Sudanese buffalo(Author:Gregor Rom)

African Forest Buffalo(Author:Jamie Lantzy)


・アノア:低地アノア, Lowland anoa, B. depressicornis:インドネシアのスラウェシ島のみに生息する小型のスイギュウで、体長150~180cm、肩高80~90cm。低地の森林、湿地などに生息する

・ヤマアノア:Mountain anoa, B. quarlesi:インドネシアのスラウェシ島およびブトン島に生息する。体長150~180cm、肩高60~70cmで、低地アノアよりも小さく、スイギュウの中でもっとも小型。山地の森林に生息する

・タマラオ:Tamaraw or Mindoro dwarf buffalo, B. mindorensis:フィリピンミンドロ島の固有種で、かつてはルソン島にも生息していたといわれる。体長150~180cm、肩高100~110cm。湿地や湿った草地などに生息する

・アジアスイギュウ:Asiatic water buffalo, B. bubalis:南アジアから東南アジアに広く分布する。インドスイギュウともいう。野生のアジアスイギュウは、家畜スイギュウより大型で、オスは体長240~300cm、肩高150~190cm、体重1,200kgになる。インドに1,500頭、東南アジアには数百頭しかいないとされ、絶滅の危機に瀕している

アノア、Lowland anoa(Author:Sakurai Midori)

ヤマアノア、Mountain anoa(Author:JERRYE AND ROY KLOTZ MD)

タマラオ(Author:Gregg Yan)

アジアスイギュウ:A herd of wild water buffalo in Kaziranga National Park, Assam, India.(Author:NejibAhmed)


一方、家畜のスイギュウは、世界全体で1億8千万頭ほどが飼育されている。家畜スイギュウには、沼沢型(swamp type)と河川型(river tipe)の2つの系統があることが知られている。沼沢型は東南アジアおよび中国南部で飼育され、河川型はバングラディッシュからインド、ヨーロッパで飼育されている。


A phylogenetic tree of the eight Bovinae cytochrome b sequences constructed using the neighbor-joining method. The underlined numbers above the internal branches are bootstrap probabilities (%) based on 1000 bootstrapped maximum-parsimony trees, Numbers with arrows are estimated divergence times (Myr).(source:Phylogenetic relationship among all living species of the genusBubalus based on DNA sequences of the cytochromeb gene)




















*1)Kazuaki Tanaka, Chester D. Solis, Joseph S. Masangkay, Kei-ichiro Maeda, Yoshi Kawamoto, Takao Namikawa.(1996)Phylogenetic relationship among all living species of the genusBubalus based on DNA sequences of the cytochromeb gene. Biochemical Genetics

売り上げランキング: 123,410

イネの起源2:Origin of Oryza sativa




栽培:Oryza sativa L.
野生:Oryza rufipogon Griff.

栽培:Oryza glaberrima Steud.
野生:Oryza barthii A. Chev.

野生イネのO. rufipogon(ルフィポゴン)の分布域は、東南アジア、南アジア、ニューギニア、オーストラリア北部である(下図)。

O. rufipogon(ルフィポゴン)の分布(souce:農業生物資源ジーンバンク)

ルフィポゴンには、多年生の系統と1年生の系統があり、1年生の系統は、O. nivara Sharma et Shastry(ニヴァラ)と分類されることもある。1年生の系統を、ルフィポゴンの亜種として扱うときは、O. rufipogon subsp. nivaraと書かれる。




Köppen World Map(Author:Peel, M. C., Finlayson, B. L., and McMahon, T. A.)







オオムギの例では、オオムギの起源地から離れたSekher al-AheimarやSalat Camiでは、周辺に野生オオムギが自然分布しておらず、遺跡からは栽培オオムギのみが出土している。これは、長江流域の遺跡から栽培型のみが出土し、野生イネの存在が確認されていないことと同じである。




倉田氏らの論文には、興味深い報告が含まれている。多年生ルフィポゴンから、ジャポニカが栽培化される過程で、「粒の幅」、「粒の重量」、「柱頭露出度」の3つの強い選択的一掃(selective sweep)が生じたという。さらに、その3つは、「脱粒性」や「草型」と比較して、きわめて強い選択をうけていた。(*3)

a, Whole-genome screening of domestication sweeps in the full population of O. rufipogon and O. sativa. The values of πw/πc are plotted against the position on each chromosome. The horizontal dashed line indicates the genome-wide threshold of selection signals (πw/πc > 3). b–d, A large-scale high-resolution mapping for fifteen domestication-related traits was performed in an O. rufipogon × O. sativa population. The domestication sweeps overlapped with characterized domestication-related QTLs are shown in dark red, and the loci with known causal genes are shown in red. Among them, three strong selective sweeps were found to be associated with grain width (b), grain weight (c) and exserted stigma (d), respectively. In b–d, the likelihood of odds (LOD) values from the composite interval mapping method are plotted against position on the rice chromosomes. Grey horizontal dashed line indicates the threshold (LOD > 3.5). (source:Nature volume 490, pages 497–501)




古代より、北アメリカの先住民は、イネ科マコモ属植物の種子を食用としてきた。アメリカでは、“wild rice”というのは、マコモの種子のことを指している。

wild rice(マコモの種子)

19th Century tribal women harvesting wild rice in the traditional manner.(1853)(Author:S. Eastman)










*3)Xuehui Huang, Nori Kurata[…]Bin Han,(2012)A map of rice genome variation reveals the origin of cultivated rice,Nature volume 490, pages 497–501
*4)槙林 啓介.(2013)栽培体系の形成と伝播・拡散から見た先史中国の稲作と地域社会.国際常民文化研究叢書3

売り上げランキング: 16,397

イネの起源1:Origin of Oryza sativa



河姆渡遺跡(Author:Jiong Sheng)



上山遺跡(source:PNAS June 20, 2017. 114 (25) 6486-6491)



2012年に、国立遺伝学研究所の倉田のり氏らは、世界各地から収集された栽培イネ(O. sativa)1,083品種と、野生イネ(O. rufipogon)446系統の遺伝子の詳細な解析によって、栽培イネの起源地は、中国の珠江中流域であると発表した。(*2)

イネのゲノム解読を行い、次に、栽培化の過程で選択的一掃が生じた起こった55箇所のゲノム領域を特定した。これらの領域には、脱粒性、草型、粒幅など、栽培化(domestication)にともなう特徴的な遺伝子が存在していた。選択的一掃(selective sweep)とは、強い選択圧によって特定の変異が集団内に広まることで、その周辺領域の多様性が低下することである。

a, Neighbour-joining tree of 446 O. rufipogon accessions, which was calculated from ∼5 million SNPs, identifies the three groups of Or-I (red), Or-II (grey) and Or-III (blue). b, Geographic origins of wild rice accessions. c, The level of genetic differentiation (FST) in O. rufipogon population around the DPL2 gene that underlies indica–japonica hybrid incompatibility in rice. d, Regional Manhattan plots of GWAS for tiller angle in O. rufipogon population identify a known gene, PROG1, using a compressed mixed linear model. The genome-wide significance threshold (1 × 10−6) and the position of the peak SNP are indicated by a horizontal dash-dot line and a vertical red line, respectively.(source:Nature volume 490, pages 497–501)

a, Phylogenetic tree of the full population (446 O. rufipogon accessions and 1,083 O. sativa varieties) calculated from ∼8 million SNPs in O. rufipogon and O. sativa. The double-layer rings indicate O. rufipogon (outer ring: Or-I, Or-II and Or-III are coloured in red, grey and blue, respectively) and O. sativa (inner ring: indica and japonica subspecies are in pink and sky blue, respectively). b, Illustration of genetic diversity and population differentiation in O. rufipogon and O. sativa. The size of the circles represents the level of genetic diversity (π) of the groups, and the FST values between the groups are indicated. ind, indica; jap, japonica. c, The spectrum of allele frequencies at the causal polymorphisms of Ghd7, DPL2 and GS3. (source:Nature volume 490, pages 497–501)

a, Phylogenetic tree of 446 O. rufipogon accessions and 1,083 O. sativa varieties calculated from SNPs in the overall regions of the 55 major domestication sweeps. b, Geographic locations of 62 O. rufipogon accessions, whose phylogenetic positions during domestication are indicated. Colour index represents the average of the genetic distance of O. rufipogon accessions to all cultivated rice accessions. Two major rivers in southern China are labelled in grey in the map. c, The average distance of O. rufipogon accessions from different countries to all cultivars. The distance was estimated by simple matching distance of SNPs around the Bh4 locus or all SNPs within the 55 domestication sweeps. d, The average distance of O. rufipogon accessions from different provinces in southern China to all cultivars. e, Schematics of the origin of cultivated rice. The aus and aromatic rice are minor groups of rice accessions with small geographic distributions.(source:Nature volume 490, pages 497–501)

集められた野生イネ(O. rufipogon)は、系統樹の解析によって、3つのサブグループOr-I、Or-II、Or-IIIに分類された。サブグループの遺伝的な系統と、採取地の地理的な関係は相関していた。イネの全ゲノムと栽培化にかかわるゲノム領域の解析によって、栽培イネと近縁なのは、中国の野生イネであり、さらに広西チワン族自治区(Guangxi)の系統がもっとも近縁であった。



*1)Xinxin Zuo, Houyuan Lu, Leping Jiang, Jianping Zhang, Xiaoyan Yang, Xiujia Huan, Keyang He, Can Wang and Naiqin Wu(2017)Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene, PNAS June 20, 2017. 114 (25) 6486-6491
*2)Xuehui Huang, Nori Kurata[…]Bin Han,(2012)A map of rice genome variation reveals the origin of cultivated rice,Nature volume 490, pages 497–501

自然農法とは何か: ゆらぎとエントロピー
電子園芸BOOK社 (2016-12-11)
売り上げランキング: 18,332